

The University of Jordan

Accreditation & Quality Assurance Center

Course Syllabus

<u>Course Name:</u> <u>EngineeringMathema</u>

Course Syllabus

1	Course title	Engineering Mathematics (1)					
2	Course number	0301202					
3	Credit hours	3					
5	Contact hours (theory, practical)	3					
4	Prerequisites/corequisites	0301201					
5	Program title	B.Sc.					
6	Program code						
7	Awarding institution	The University of Jordan					
8	School	Science					
9	Department	Mathematics					
10	Course level	College requirement					
11	Year of study and semester (s)	all Semesters					
12	Other department (s) involved in teaching the course	None					
13	Main teaching language	English					
14	Delivery method	■Face to face learning□Blended □Fully online					
15	Online platforms(s)	■Moodle ■Microsoft Teams □Skype□Zoom □Others					
16	Issuing/Revision Date						

17 Course Coordinator:

Name:Dr.SalamAlnabulsi	Contact hours:			
Office number:	Phone number: 22104			
Email:s.alnabulsi@ju.edu.jo				

18 Other instructors:

Name:Ahmad abdalla					
Office number:					
Phone number: 22087					
Email: <u>farah@ju.edu.jo</u>					
Contact hours:					
Name:Mohammad Alhorani					
Office number:					
Phone number: 22109					
Email:horani@ju.edu.jo					
Contact hours:					

19 Course Description:

Ordinary differential equations, linear differential equations of second and higher order, systems of differential equations, phase plane, stability, series solutions of differential equations, orthogonal functions, Laplace transforms, linear systems of equations, matrices and determinants.

20 Course aims and outcomes:

A- Aims:

1- Model some real life problems using ODEs.

2- Solve some special types of ODEs, such as first order ODEs, Linear

ODEs, Cauchy Euler ODEs.

3- Use series solutions to solve ODEs.

4- Use Laplace transforms to solve ODEs.

B- Students Learning Outcomes (SLOs):

Upon successful completion of this course, students will be able to:

Successful completion of the course should lead to the following outcomes:

	SLO							
SLOs	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
SLOs of the								
course								
1 Master the basic								
concepts of	•	•		•			•	
ordinary differential								
equation (ODE).								
2 Solve a system of								
2 Solve a system of linear ODE's					•			
	•	•			•			•
3 Select proper	•						•	•
procedure to solve								
a given ODE and								
solve it								
4 Find series							•	
solution of 2nd	•							
order linear								
differential								
equations. 5 Find Laplace								
transform and the								
inverse Laplace								
transform of given	. •							
functions. Solve the								
IVP by using								
Laplace transform								

21. Topic Outline and Schedule:

Week	Lecture	Торіс	Student Learning Outcome	Learning Methods (Face to Face/Blended / Fully Online)	Platform	Synchronous/ Asynchronous Lecturing	Evaluation Methods	Resources
	1.1	Basic concepts: differential (Classifications)	1,2,5,7,8	Face to Face	Moodle		Exam	Text Book
1.2	1.3	Separable ODEs		Face to Face	Moodle		Exam	Text Book
1-3	1.4	Exact ODEs. Integrating Factors		Face to Face	Moodle		Exam	Text Book
	1.5	Linear ODEs. Bernoulli Equation	-	Face to Face	Moodle		Exam	Text Book
	2.1	Independence- Wronskian	1,2,5,7,8	Face to Face	Moodle		Exam	Text Book
	2.2	Homogeneous Linear ODEs of Second Order		Face to Face	Moodle		Exam	Text Book
	2.3	Homogeneous Linear ODEs with Constant Coefficients		Face to Face	Moodle		Exam	Text Book
2	2.4	Euler–Cauchy Equations		Face to Face	Moodle		Exam	Text Book
	2.5	Nonhomogeneous ODEs	-	Face to Face	Moodle		Exam	Text Book
	2.6	Undetermined Coefficients		Face to Face	Moodle		Exam	Text Book
	2.7	Solution by Variation of Parameters		Face to Face	Moodle		Exam	Text Book
3	3.1	Higher-Order Homogeneous and Undetermined	1,2,5,7,8	Face to Face	Moodle		Exam	Text Book

ACCREDITATION & GUALITY AS	SURANCE CENTER						
		Coefficients					
	3.2	Higher-Order- Variation		Face to Face	Moodle	Exam	Text Book
	4.1	Homogeneous System-I	1,5	Face to Face	Moodle	Exam	Text Book
4	4.2	Homogeneous System-II		Face to Face	Moodle	Exam	Text Book
	4.3	Nonhomogeneous System		Face to Face	Moodle	Exam	Text Book
	5.1	Basic properties of power series	2,7	Face to Face	Moodle	Exam	Text Book
5	5.2	Solution of ODE near ordinary points		Face to Face	Moodle	Exam	Text Book
	5.3	Solution of ODE near regular singular points		Face to Face	Moodle	Exam	Text Book
	6.1	Definition of Laplace and inverse of Laplace	1,7,8	Face to Face	Moodle	Exam	Text Book
6	6.2	Laplace Transform of derivative and of integral Solving initial value problem using Laplace transform		Face to Face	Moodle	Exam	Text Book
	6.3	Unit step function , : Dirac &function		Face to Face	Moodle	Exam	Text Book

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
First Exam	30		1+2+5+7+8		On Campus
Second Exam	20		1+2+5+7		On Campus
Final Exam	50		1+2+5+7+8		On Campus

23 Course Requirements

NA

24 Course Policies:

- 1. Attendance is absolutely essential to succeed in this course. You are expected to attend every class; please notify your instructor if you know you are going to be absent. All exams must be taken at the scheduled time. Exceptions will be made only in extreme circumstances, by prior arrangement with the instructor.
- 2. If a student is absent for more than 10% of lectures without an excuse of sickness or due to other insurmountable difficulty, then he/she shall be barred from the final examination also he/she will get a failing grade in this course.
- 3. Medical certificates shall be given to the University Physician to be authorized by him. They should be presented to the Dean of the Faculty within two weeks of the student's ceasing to attend classes.
- 4. Test papers shall be returned to students after correction. His/her mark is considered final after a lapse of one week following their return.
- 5. Cheating is prohibited. The University of Jordan regulations on cheating will be applied to any student who cheats in exams or on home works.

25 References:

A- Required book(s), assigned reading and audio-visuals: Advanced Engineering Mathematics by E. Kreyszig, 10th Edition B- Recommended books, materials, and media:

Advanced Engineering Mathematics by Dennis G. Zill and Warren S. Wright, 5th edition.

Advanced Engineering Mathematics by K. A. Stroud and Dexter J. Booth, 5th edition

26 Additional information:

Name of Course Coordinator: Date:
Head of Curriculum Committee/Department: Prof. Ahmad Al Zghoul Signature:
Head of Department: -Prof. Manal Ghanem - Signature: -M. Ghanem
Head of Curriculum Committee/Faculty: Signature:
Dean: Mahmoud Jaghoub Signature: